R 使用Seurat包处理单细胞测序数据

42次阅读
没有评论

共计 3627 个字符,预计需要花费 10 分钟才能阅读完成。

#install.packages(“Seurat”)
#install.packages(“outliers”)
#install.packages(“pbmcapply”)
#install.packages(“doFuture”)

#if (!requireNamespace(“BiocManager”, quietly = TRUE))
#    install.packages(“BiocManager”)
#BiocManager::install(“singscore”)
#BiocManager::install(“GSVA”)
#BiocManager::install(“GSEABase”)
#BiocManager::install(“limma”)

#install.packages(“devtools”)
#library(devtools)
#devtools::install_github(‘dviraran/SingleR’)

###################################04. 数据前期处理和矫正 ###################################
#读取数据
library(limma)
library(Seurat)
library(dplyr)
library(magrittr)

setwd(“C:\Users\lexb4\Desktop\scRNA\04-07.Seurat”)             # 设置工作目录

# 读取文件,并对重复基因取均值
rt=read.table(“geneMatrix.txt”,sep=”t”,header=T,check.names=F)
rt=as.matrix(rt)
rownames(rt)=rt[,1]
exp=rt[,2:ncol(rt)]
dimnames=list(rownames(exp),colnames(exp))
data=matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames=dimnames)
data=avereps(data)

# 将矩阵转换为 Seurat 对象,并对数据进行过滤
pbmc <- CreateSeuratObject(counts = data,project = “seurat”, min.cells = 3, min.features = 50, names.delim = “_”,)
#使用 PercentageFeatureSet 函数计算线粒体基因的百分比
pbmc[[“percent.mt”]] <- PercentageFeatureSet(object = pbmc, pattern = “^MT-“)
pdf(file=”04.featureViolin.pdf”,width=10,height=6)           # 保存基因特征小提琴图
VlnPlot(object = pbmc, features = c(“nFeature_RNA”, “nCount_RNA”, “percent.mt”), ncol = 3)
dev.off()
pbmc <- subset(x = pbmc, subset = nFeature_RNA > 50 & percent.mt < 5) #对数据进行过滤

# 测序深度的相关性绘图
pdf(file=”04.featureCor.pdf”,width=10,height=6)              #保存基因特征相关性图
plot1 <- FeatureScatter(object = pbmc, feature1 = “nCount_RNA”, feature2 = “percent.mt”,pt.size=1.5)
plot2 <- FeatureScatter(object = pbmc, feature1 = “nCount_RNA”, feature2 = “nFeature_RNA”,,pt.size=1.5)
CombinePlots(plots = list(plot1, plot2))
dev.off()

# 对数据进行标准化
pbmc <- NormalizeData(object = pbmc, normalization.method = “LogNormalize”, scale.factor = 10000)
#提取那些在细胞间变异系数较大的基因
pbmc <- FindVariableFeatures(object = pbmc, selection.method = “vst”, nfeatures = 1500)
#输出特征方差图
top10 <- head(x = VariableFeatures(object = pbmc), 10)
pdf(file=”04.featureVar.pdf”,width=10,height=6)              #保存基因特征方差图
plot1 <- VariableFeaturePlot(object = pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
CombinePlots(plots = list(plot1, plot2))
dev.off()

###################################05.PCA 主成分分析 ###################################
##PCA 分析
pbmc=ScaleData(pbmc)                     #PCA 降维之前的标准预处理步骤
pbmc=RunPCA(object= pbmc,npcs = 20,pc.genes=VariableFeatures(object = pbmc))     #PCA 分析

# 绘制每个 PCA 成分的相关基因
pdf(file=”05.pcaGene.pdf”,width=10,height=8)
VizDimLoadings(object = pbmc, dims = 1:4, reduction = “pca”,nfeatures = 20)
dev.off()

# 主成分分析图形
pdf(file=”05.PCA.pdf”,width=6.5,height=6)
DimPlot(object = pbmc, reduction = “pca”)
dev.off()

# 主成分分析热图
pdf(file=”05.pcaHeatmap.pdf”,width=10,height=8)
DimHeatmap(object = pbmc, dims = 1:4, cells = 500, balanced = TRUE,nfeatures = 30,ncol=2)
dev.off()

# 每个 PC 的 p 值分布和均匀分布
pbmc <- JackStraw(object = pbmc, num.replicate = 100)
pbmc <- ScoreJackStraw(object = pbmc, dims = 1:20)
pdf(file=”05.pcaJackStraw.pdf”,width=8,height=6)
JackStrawPlot(object = pbmc, dims = 1:20)
dev.off()

###################################06.TSNE 聚类分析和 marker 基因 ###################################
##TSNE 聚类分析
pcSelect=20
pbmc <- FindNeighbors(object = pbmc, dims = 1:pcSelect) #计算邻接距离
pbmc <- FindClusters(object = pbmc, resolution = 0.5) #对细胞分组, 优化标准模块化
pbmc <- RunTSNE(object = pbmc, dims = 1:pcSelect) #TSNE 聚类
pdf(file=”06.TSNE.pdf”,width=6.5,height=6)
TSNEPlot(object = pbmc, do.label = TRUE, pt.size = 2, label = TRUE)    #TSNE 可视化
dev.off()
write.table(pbmc$seurat_clusters,file=”06.tsneCluster.txt”,quote=F,sep=”t”,col.names=F)

## 寻找差异表达的特征
logFCfilter=0.5
adjPvalFilter=0.05
pbmc.markers <- FindAllMarkers(object = pbmc,
only.pos = FALSE,
min.pct = 0.25,
logfc.threshold = logFCfilter)
sig.markers=pbmc.markers[(abs(as.numeric(as.vector(pbmc.markers$avg_logFC)))>logFCfilter & as.numeric(as.vector(pbmc.markers$p_val_adj)) write.table(sig.markers,file=”06.markers.xls”,sep=”t”,row.names=F,quote=F)

top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
#绘制 marker 在各个 cluster 的热图
pdf(file=”06.tsneHeatmap.pdf”,width=12,height=9)
DoHeatmap(object = pbmc, features = top10$gene) + NoLegend()
dev.off()

# 绘制 marker 的小提琴图
pdf(file=”06.markerViolin.pdf”,width=10,height=6)
VlnPlot(object = pbmc, features = c(“IGLL5”, “MBOAT1”))
dev.off()

# 绘制 marker 在各个 cluster 的散点图
pdf(file=”06.markerScatter.pdf”,width=10,height=6)
FeaturePlot(object = pbmc, features = c(“IGLL5”, “MBOAT1”),cols = c(“green”, “red”))
dev.off()

# 绘制 marker 在各个 cluster 的气泡图
pdf(file=”06.markerBubble.pdf”,width=12,height=6)
cluster10Marker=c(“MBOAT1”, “NFIB”, “TRPS1”, “SOX4”, “CNN3”, “PIM2”, “MZB1”, “MS4A1”, “ELK2AP”, “IGLL5”)
DotPlot(object = pbmc, features = cluster10Marker)
dev.off()

###################################07. 注释细胞类型 ###################################
library(SingleR)
counts<-pbmc@assays$RNA@counts
clusters<[email protected]$seurat_clusters
[email protected]$orig.ident
singler = CreateSinglerObject(counts, annot = ann, “pbmc”, min.genes = 0,
species = “Human”, citation = “”,
ref.list = list(), normalize.gene.length = F, variable.genes = “de”,
fine.tune = F, do.signatures = T, clusters = clusters, do.main.types = T,
reduce.file.size = T, numCores = 1)
singler$seurat = pbmc
singler$meta.data$xy = pbmc@[email protected]
clusterAnn=singler$singler[[2]]$SingleR.clusters.main$labels
write.table(clusterAnn,file=”07.clusterAnn.txt”,quote=F,sep=”t”,col.names=F)
write.table(singler$other,file=”07.cellAnn.txt”,quote=F,sep=”t”,col.names=F)

# 准备 monocle 分析需要的文件
monocle.matrix=as.matrix(pbmc@assays$RNA@data)
monocle.matrix=cbind(id=row.names(monocle.matrix),monocle.matrix)
write.table(monocle.matrix,file=”07.monocleMatrix.txt”,quote=F,sep=”t”,row.names=F)
monocle.sample=as.matrix([email protected])
monocle.sample=cbind(id=row.names(monocle.sample),monocle.sample)
write.table(monocle.sample,file=”07.monocleSample.txt”,quote=F,sep=”t”,row.names=F)
monocle.geneAnn=data.frame(gene_short_name = row.names(monocle.matrix), row.names = row.names(monocle.matrix))
monocle.geneAnn=cbind(id=row.names(monocle.geneAnn),monocle.geneAnn)
write.table(monocle.geneAnn,file=”07.monocleGene.txt”,quote=F,sep=”t”,row.names=F)
write.table(singler$other,file=”07.monocleClusterAnn.txt”,quote=F,sep=”t”,col.names=F)
write.table(sig.markers,file=”07.monocleMarkers.txt”,sep=”t”,row.names=F,quote=F)

正文完
 0